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Abstract. We prove that iterated Whitehead products of length (n+1) vanish

in any value of an n-excisive functor in the sense of Goodwillie. We compare then

different notions of homotopy nilpotency, from the Berstein-Ganea definition to

the Biedermann-Dwyer one. The latter is strongly related to Goodwillie calculus

and we analyze the vanishing of iterated Whitehead products in such objects.

Introduction

Goodwillie calculus, [8], [9], gives a systematic way to approximate a functor (say

from spaces to spaces) by a tower of functors satisfying higher excision properties.

When applied to the identity functor this tower reflects remarkable periodicity

properties, as investigated by Arone and Mahowald, [2]. More recently Biedermann

and Dwyer, [5], used the stages of the very same tower to construct (simplicial)

algebraic theories in the sense of Lawvere, [15]. The homotopy algebras over

these theories are called homotopy nilpotent groups, and the class of nilpotency

corresponds exactly to the chosen stage of the Goodwillie tower.

Our objectives in this article are twofold. First we investigate why n-excisive

functors should be related to homotopy nilpotency in the classical sense. In the

early sixties, Berstein and Ganea introduced a concept of nilpotent loop spaces,

[4]. They require that an iterated commutator map be trivial up to homotopy,

which implies in particular that iterated Samelson products vanish in the loop

space ΩX, or equivalently, that iterated Whitehead products vanish in X. Al-

ready G. Whitehead [20] had the insight that the (J.H.C.) Whitehead products

satisfy identities which reflect commutator identities for groups. Work of Hopkins,

[12], drew renewed attention to such questions by relating this classical nilpotency
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notion with the nilpotence theorem of Devinatz, Hopkins, and Smith, [7]. We

prove the following.

Theorem 2.1 Let F be any n-excisive functor from the category of pointed spaces

to pointed spaces. Then all (n+1)-fold iterated Whitehead products vanish in F (X)

for every finite space X.

Our result shows in fact that ΩF (X) is a homotopy nilpotent loop space in

the sense of Ganea and Bernstein for every n-excisive functor F and every finite

space X.

The difficulty of the proof resides in finding a way to take into account the global

property of the functor (to be n-excisive) and not to focus on a particular value

F (X). Except for this, the proof uses the general theory of Goodwillie calculus.

In the second part of the article we look more closely at the relationship between

the different types of homotopy nilpotency available on the market. We start

with the classical algebraic theory Niln describing nilpotent groups of class ≤ n,

and observe that Berstein-Ganea nilpotent loop spaces are Niln-algebras in the

homotopy category of spaces. We show that homotopy Niln-algebras in the sense

of Badzioch, [3], are always homotopy nilpotent in the sense of Biedermann and

Dwyer. Finally, both are Niln-algebras in the homotopy category of spaces, so that

the vanishing of Whitehead products applies to all kinds of homotopy nilpotent

groups that appeared so far in the literature, and in particular to the Biedermann-

Dwyer ones.

Theorem 2.1 can be rephrased thus as follows: All (n+ 1)-fold iterated White-

head products vanish in X, if ΩX is a homotopy nilpotent group of class ≤ n.

This provides a positive answer to a question asked by the authors of [5] and the

proof depends on a non-trivial computation of sets of components they perform.
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1. Samelson and Whitehead products

We recall briefly the definition of Samelson and Whitehead products and con-

struct a “universal space” built from wedges of spheres in which higher Whitehead

products vanish.

Let X be a pointed space. Given α ∈ πa+1X and β ∈ πb+1X, take the adjoint

classes α′ ∈ πa(ΩX) and β′ ∈ πb(ΩX). The composite of the product map α′×β′ :
Sa×Sb → ΩX×ΩX with the commutator map ΩX×ΩX → ΩX is null-homotopic

when restricted to the wedge Sa∨Sb and thus factors through Sa+b, uniquely up to

homotopy. This factorization represents the Samelson product 〈α′, β′〉 ∈ πa+bΩX

and the adjoint class is the Whitehead product [α, β] ∈ πa+b+1X.

Remark 1.1. Iterated Whitehead products can be computed as adjoint to iterated

Samelson products. For example a triple Whitehead product of the form [[α, β], γ]

coincides with the adjoint of the Samelson product 〈 〈α′, β′〉, γ′〉. Let us also men-

tion that the order of the classes in a Whithead product does not matter (up to a

sign). We will therefore concentrate on one standard choice of bracketing.

By definition, the Whitehead product [ι1, ι2] of the two canonical inclusions

ι1 : Sa ↪→ Sa ∨ Sb and ι2 : Sb ↪→ Sa ∨ Sb is the attaching map of the top cell in

Sa × Sb. Moreover, any Whitehead product [α, β] : Sa+b+1 → X factors through

[ι1, ι2]. This motivates the construction of a space built from wedges of spheres

which will be crucial for understanding when certain iterated Whitehead products

vanish. We consider n + 1 positive integers k1, . . . , kn+1 and the wedge of n + 1

spheres W = ∨Ski . Denote by ιi : Ski → W the wedge summand inclusion.

If P(n+ 1) denotes the poset of subsets of n+ 1 = {1, . . . , n + 1}, define the

(n+ 1)-cube of pointed spaces V : P(n+ 1) \ {∅} → Spaces∗ by sending a subset

S ⊂ n+ 1 to
∨

i 6∈S S
ki . Adding W as initial value V (∅) makes this diagram a

strongly homotopy co-Cartesian cube as defined by Goodwillie in [9, p. 647], i.e.

all 2-dimensional faces are homotopy pushouts. We let Q be the homotopy inverse

limit of V , and to fix a representative we take Q to be the inverse limit of the fibrant

replacement V ˜↪→V̂ of this diagram in the injective model structure, [10, 13]. We

will also write abusively V (i) instead of V ({i}) to ease the notation.

Example 1.2. When n = 1, we have two spheres Sk1 and Sk2 . The diagram V

is the pull-back diagram Sk1 → ∗ ← Sk2 and Q = Sk1 × Sk2 . The Whitehead

product of the summand inclusions is trivial in Q.
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The looped diagram ΩV is easier to analyze since the loop space on a wedge of

spheres splits by the Hilton-Milnor theorem, see the original article [11] or Milnor’s

unpublished article in [1]. So-called “basic words” w in x1, . . . , xn+1 form a basis

of the free Lie algebra generated by x1, . . . , xn+1 and each of these determines

a Whitehead product in πN(w)(S
k1 ∨ · · · ∨ Skn+1) where N(w) plus the number

of letters in w is the sum of as many ki’s as there are xi’s in w plus 1. For

example, when n = 2, the basic word x1x2x3 corresponds to the Whitehead product

[[ι1, ι2], ι3] represented by a map Sk1+k2+k3−2 → Sk1 ∨Sk2 ∨Sk3 . The Hilton-Milnor

theorem then states that Ω(Sk1 ∨ · · · ∨ Skn+1) '
∏

w ΩSN(w).

Lemma 1.3. The loop space ΩQ is homotopy equivalent to a product of loop spaces

on spheres, namely
∏

ΩSN(w) where the product is taken over all basic words in

at most n of the letters x1, . . . , xn+1.

Proof. We identify ΩQ with the homotopy inverse limit of the diagram ΩV , each

value of which splits as a product of loop spaces on spheres:

ΩV (S) '
∏
i 6∈S

ΩSki × · · · ×
∏

w∈WS

ΩSN(w)

where WS is the subset of those basic words written with all xi’s with i 6∈ S. We

observe that each map ΩV (S) → ΩV (T ), with S ⊂ T , is the projection on the

summands ΩSN(w) corresponding to the basic words not written with the letters

in T . Therefore the diagram ΩV is a hypercube of which the homotopy inverse

limit is the product of all
∏

w∈WS
ΩSN(w) with S 6= ∅. �

For any choice of bracketing n+ 1 elements there is an (n+ 1)-fold Whitehead

product w : Sk1+···+kn+1−n → W . We denote by Cw the homotopy cofiber of w.

Lemma 1.4. The (n+ 1)-fold Whitehead product [[. . . [[ι1, ι2], ι3], . . . ], ιn+1] vanish

in Q.

Proof. This Whitehead products vanish in Q if and only if the adjoint Samelson

product vanish in ΩQ. Since ΩQ splits as a product of loop spaces on spheres,

it is sufficient to prove that the projection on each factor is null-homotopic. By

Lemma 1.3 each factor already appears in ΩV (S) for some non-empty subset S,

so that, by adjunction again, it is enough to show that the image in V (i) of our

(n+ 1)-fold Whitehead product vanishes for any 1 ≤ i ≤ n+ 1. This is so because

the image of ιi in V (i) is the trivial map and any Whitehead product involving

the trivial map is null-homotopic. �
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2. The values of n-excisive functors

We perform our main computation in this section. Let F be an n-excisive

functor from pointed spaces to pointed spaces (so F sends strongly homotopy co-

Cartesian (n+1)-cubes to homotopy Cartesian ones). We prove that all (n+1)-fold

Whitehead products vanish in F (X) for any space X. Because it is very difficult to

use the global property of excision by focusing on one single value of the functor F ,

we will use pointed representable functors RX , defined by RX(Y ) = map∗(X, Y ).

For any pointed space A a natural transformation RX ∧ A → F corresponds by

adjunction to a map A→ hom(RX , F ), i.e. to a map A→ F (X) by the enriched

Yoneda Lemma [14, 2.31]. Any functor G has a universal n-excisive approximation

G→ PnG, [9].

Theorem 2.1. Let F be any n-excisive functor from the category of pointed spaces

to pointed spaces. Then all (n+1) fold iterated Whitehead products vanish in F (X)

for every finite space X.

Proof. Let us fix homotopy classes of maps αi : Ski → F (X) for 1 ≤ i ≤ n+1. We

need to prove that the iterated Whitehead product [[. . . [[α1, α2], α3], . . . ], αn+1] is

zero. This product is represented by a map

Sk1+...kn+1+1 w−→ ∨n+1
i=1 S

ki = W → F (X)

which is null-homotopic if it factors through the homotopy cofiber Cw of the “uni-

versal” (n + 1)-fold Whitehead product w. The use of representable functors

translates then as follows: We need to show that any natural transformation

η : RX ∧ W → F factors through RX ∧ Cw. As F is n-excisive, there exists a

natural transformation Pn(RX ∧W ) → F such that the composite RX ∧W →
Pn(RX ∧W )→ F coincides with η up to homotopy. It is thus enough to construct

a natural transformation RX ∧ Cw → Pn(RX ∧W ).

Smashing the diagram V with a representable functor we obtain a hypercube

RX ∧ V of functors, which is strongly homotopy cocartesian since V is so. We

focus on the natural transformations RX ∧ W → RX ∧ V (i). If c = dimX,

and Y is a k-connected space with k ≥ c, then RX(Y ) is (k − c)-connected and

(RX ∧ W )(Y ) → (RX ∧ V (i))(Y ) is (k − c + ki)-connected. Let G denote the

homotopy inverse limit of the diagram of functors RX ∧ V .

The generalized Blackers-Massey theorem [8, Theorem 2.3] implies that the

natural transformation θ : RX∧W → G is [(n+1)k−(n+1)c+
∑
ki−n]-connected
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when evaluated at a k-connected space with k ≥ c. This implies that RX ∧W
and G agree to order n in the terminology of [9, Definition 1.2, Proposition 1.6],

so that Pn(RX ∧W ) ' Pn(G).

Lemma 1.4 yields a map Cw → Q such that W → Cw → Q is the natural map

from W to the homotopy inverse limit of the diagram V (we fix the model Cw =

W∪wDk1+···+kn+1+2 for the homotopy cofiber so that the factorization is strict). We

interpret this map as a map from the constant diagram Cw to a fibrant replacement

V̂ of V in the injective model category of hypercubical diagrams. Smashing with a

representable functor we get a natural transformation RX ∧Cw → RX ∧V . Taking

homotopy inverse limits we obtain finally a natural transformation RX ∧Cw → G

such that the the composite RX ∧ W → RX ∧ Cw → G coincides with θ. The

natural transformation

RX ∧ Cw → G→ PnG ' Pn(RX ∧W )

is the one we needed to conclude. �

Remark 2.2. This proof easily generalizes to show that iterated generalized White-

head products vanish. It suffices to replace the Hilton splitting theorem for loop

spaces on a wedge of spheres by Milnor’s generalized version for wedges of suspen-

sions.

3. Nilpotent groups and algebraic theories

Let us first recall the classical concept of algebraic theory due to Lawvere [15]

and some of its modern variations.

Definition 3.1. A small category T is an algebraic theory if the objects of T

are indexed by natural numbers {T0, T1, . . . , Tn, . . .} and for all n ∈ N the n-fold

categorical coproduct of T1 is naturally isomorphic to Tn. The algebraic theory T

is simplicial if it is a (pointed) simplicial category, i.e., T is enriched over sSets∗
Let C be a category. A C-algebra over a theory T is a functor A : T op → C taking

coproducts in T into products in C.

If T is a simplicial algebraic theory and C = sSets∗, then we distinguish between

strict and homotopy simplicial algebras, which are simplicial functors A : T op → C

taking coproducts in T to products in C strictly or up to homotopy, respectively.

The categories of simplicial algebras and homotopy simplicial algebras were com-

pared by Badzioch in [3]. He proved that any homotopy algebra can be rigidified

to a strict algebra.
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Of central interest for us will be algebras over algebraic theories defined in the

homotopy category of simplicial sets C = Ho(sSets∗). We call them algebras up

to homotopy, in order to distinguish them from the homotopy algebras defined

above. There is a natural way to associate to every homotopy algebra A, an

algebra up to homotopy: just compose the functor A with the product preserving

functor Γ: sSets∗ → Ho(sSets∗). Formally, we need to choose homotopy inverse

maps fk : A(k) → A(1)k and gk : A(1)k → A(k) and replace each morphism

A(h) : A(m)→ A(n) by the composite fn ◦A(h) ◦ gm. The converse is not true of

course, and we will encounter examples of algebras up to homotopy which cannot

be upgraded to homotopy algebras.

Lawvere in his seminal article [15] has discovered the fundamental fact that an

algebraic theory defining a variety as the category of algebras, is the dual of the

subcategory of finitely generated free algebras in this variety. In this work we will

look closer into the algebraic theories defining the concepts of groups and nilpotent

groups of class ≤ n in various settings.

Consider thus the category Niln whose objects are the natural numbers 0, 1, 2, . . .

and morphisms k → l are group homomorphisms Fk/Γn+1Fk → Fl/Γn+1Fl. By

identifying the object k with the free nilpotent groups Fk/Γn+1Fk of class n, one

embeds Niln as a full subcategory of the category of groups. In fact, as nilpotent

groups of class ≤ n, the group Fk/Γn+1Fk is free in the sense that it can be

identified with the coproduct of k copies of Z = F1/Γn+1F1. The set of morphisms

from 1 to k is precisely the group Fk/Γn+1Fk. When n = ∞, we think of the

objects of Nil∞ to be the free groups Fk. A Niln-algebra in Sets is thus a product

preserving contravariant functor N : Nilopn → Sets.

Proposition 3.2. A Niln-algebra is a nilpotent group of class ≤ n.

Because it will play an important role in the sequel, let us be precise and say

explicitly how the group structure arises and why it is nilpotent. By abuse of

notation we write also N for the value N(1). The multiplication m : N ×N → N

is the morphism corresponding to the product of the two generators of F2 in

the quotient F2/Γn+1F2 and the inverse is the morphism N → N corresponding

to the inverse of the generator of F1. It is easy to check that this equips N

with a group structure. This is in fact equivalent to the structure of a Nil∞-

algebra: Given k elements n1, . . . , nk ∈ N and a word w in k letters, the product

w(n1, . . . , nk) can be read of from the morphism Nk → N corresponding to w.

The claim about the nilpotency class follows then from the fact that all words of
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the form [[. . . [[x1, x2], x3], . . . ], xn+1] are identified to 1 in Fn+1/Γn+1Fn+1. Hence

any iterated commutator of length ≥ n+ 1 must be trivial in a Niln-algebra.

Remark 3.3. A Niln-algebra in the category of simplicial sets, i.e. a product pre-

serving contravariant functor N : Nilopn → sSets, is a simplicial nilpotent group

of class ≤ n. In particular when n = 1 we are considering simplicial abelian

groups, i.e. generalized Eilenberg-Mac Lanes spaces, so called “GEMs”, see for

example [6]. Schwede also considers such objects and compares them stably, [19,

Example 7.4] with a category of modules over a Gamma-ring.

Badzioch’s rigidification result states in this context that any homotopy Niln-

algebra is homotopy equivalent to a strict Niln-algebra. Again for n = 1, this

means that all homotopy Nil1-algebras are homotopy equivalent to GEMs. This

is not quite what we would like to study when we are speaking about a homotopy

version of abelian topological groups (what we understand under this name is

rather an infinite loop space). The notion of Niln-algebras in simplicial sets is thus

too rigid and we will need to relax it a little.

4. Nilpotent groups in the homotopy category

In the next section we will turn to the solution Biedermann and Dwyer found to

describe homotopy nilpotency. But before we do that, we first describe the most

naive way to define nilpotency in homotopy theory.

Definition 4.1. A nilpotent group up to homotopy of class ≤ n is a product

preserving contravariant functor N : Nilopn → Ho(Spaces∗).

How do these nilpotent groups up to homotopy look like? They are pointed

spaces G together with a homotopy associative multiplication and a homotopy

inverse (i.e. group-like H-spaces) coming from the morphisms in Nilopn (2, 1) and

Nilopn (1, 1) described in the previous section, such that all higher commutator maps

of order n + 1 are null-homotopic. Berstein and Ganea, [4, Definition 1.7] give

a definition of nilpotency for group like spaces by requiring that the (n + 1)-

st commutator map be null-homotopic. Their work predates by two years the

introduction by Lawvere of algebraic theories, and is therefore not stated in the

language we have used, but it is equivalent.

Proposition 4.2. A nilpotent group up to homotopy is a homotopy nilpotent group

in the sense of Berstein and Ganea. �
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Example 4.3. When n = 1, a loop space is abelian (nilpotent of class ≤ 1) up

to homotopy if the commutator map ΩX × ΩX → ΩX is null-homotopic, i.e. if

the product is homotopy commutative. Thus any double loop space is abelian up

homotopy. When n =∞, groups up to homotopy are simply group objects in the

homotopy category, i.e. homotopy associative H-spaces with inverse.

These examples show that the Berstein-Ganea definition is too flexible. When

looking at loop spaces, the filtration given by nilpotency up to homotopy interpo-

lates roughly between loop spaces and double loop spaces. However it allows us

to read off the vanishing of iterated Samelson products. The following result is

basically [4, Theorem 4.6].

Proposition 4.4. Let X be a pointed space and assume that the loop space ΩX

is nilpotent up to homotopy of class ≤ n. Then all (n+ 1) fold iterated Whitehead

products vanish in X.

Proof. The vanishing of iterated Whitehead products is equivalent to the vanishing

of iterated Samelson products in the loop space. This follows now directly from the

fact that in a Niln-algebra in the homotopy category the (n+ 1)-fold commutator

map (ΩX)n+1 → ΩX is null-homotopic by definition. �

Example 4.5. Porter proved that S3 is nilpotent up to homotopy of class 3,

[16]. There is a non-trivial three fold Whitehead product in BS3, but all 4-fold

products vanish. However, the compact Lie group S3 is not nilpotent as a group.

More generally, Rao proved that compact Lie groups are nilpotent up homotopy

if and only if their integral homology is torsion free, [17]. The if part is due to

Hopkins, [12].

5. Enriched homotopy nilpotent groups

This section finally introduces the “correct” homotopy nilpotent groups. We

recall their definition, show that iterated Samelson products vanish in such spaces,

and compare them to homotopy Niln-algebras and spaces which are nilpotent up

to homotopy in the sense of Berstein and Ganea.

In their recent work [5] Biedermann and Dwyer define homotopy nilpotent

groups as homotopy Gn-algebras in the category of pointed spaces, where Gn is

a simplicial algebraic theory constructed from the Goodwillie tower of the iden-

tity. Concretely Gopn is the simplicial category whose objects are 0, 1, 2, . . . and
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such that the simplicial set of morphisms Gopn (k, l) is the space of natural transfor-

mations ∏
k

Ω(Pn(id))inj →
∏
l

Ω(Pn(id))inj

The functor Pn(id) lives in the category of functors from finite pointed spaces to

pointed spaces, and (Pn(id))inj denotes the fibrant replacement in the injective

model structure. Hence a homotopy nilpotent group of class ≤ n is the value

at 1 of a simplicial functor X̃ from Gopn to pointed spaces which commutes up to

homotopy with products. Homotopy algebras in an enriched context have been

studied by Rosický in [18].

Proposition 5.1. A homotopy Niln-algebra is always a homotopy Gn-algebra.

Both of them are Niln-algebras up to homotopy.

Proof. The space of maps from k to 1 in the algebraic theory Gn, which is by

definition the space of all natural transformations from (ΩPn(id))k to ΩPn(id), is

identified as the space ΩPn(id)(∨kS1), [5, Corollary 4.7]. Biedermann and Dwyer’s

main computation shows that the group of connected components coincides with

the free nilpotent group of class n on k generators:

π0Gn(k, 1) ∼= π0
(
ΩPn(id)(∨kS1)

) ∼= Fk/Γn+1Fk.

There is hence a functor of simplicial algebraic theories π0 : Gn → Niln. Thus

any homotopy Niln-algebra can be seen as a homotopy Gn-algebra by pulling back

along π0.

Consider now a homotopy nilpotent group ΩX of class ≤ n given as the value at

1 of a homotopy Gn-algebra X̃ : Gn → Spaces∗. The composite diagram F : Gn →
Spaces∗ → Ho(Spaces∗) is now simply a diagram F : Niln → Ho(Spaces∗) as we

keep from the simplicial data only one homotopy class of maps X̃(k) → X̃(l) for

each connected component of Gn(k, l) ' ΩPn(id)(∨kS1)l. The second claim then

follows from the general procedure we described in Section 3 to get an algebra up

to homotopy from a homotopy algebra. �

Theorem 5.2. Let ΩX be a homotopy nilpotent group of class ≤ n. Then all

(n+ 1) fold iterated Whitehead products vanish in X.

Proof. The Berstein-Ganea Proposition 4.4 implies the vanishing of all iterated

Whitehead products of length n+ 1 in X. �
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Remark 5.3. Observe here that a homotopy nilpotent group of class n is also a

homotopy nilpotent group of class ∞ since we have a map of algebraic theories

G∞ → Gn. This means that a homotopy nilpotent group of class n has the homo-

topy type of a loop space and the multiplication derived from the algebraic theory

is this precise loop multiplication. This is what allows us to use the Berstein-Ganea

result in the last line of the previous proof.

Example 5.4. Homotopy abelian groups, that is homotopy G1-algebras, are infi-

nite loop spaces and homotopy groups, i.e. homotopy G∞-algebras, are loop spaces.

This is why the notion of homotopy nilpotency of Biedermann and Dwyer is better

than the others. It interpolates between the “right” notions of groups and abelian

groups in homotopy theory. In particular, BU is homotopy abelian, but not a

homotopy Nil1-algebra, and Ω2S4 is abelian up to homotopy, but not a homotopy

abelian group. This illustrates how the different notions of nilpotency differ.

Remark 5.5. Biedermann and Dwyer prove that any n-excisive functor F from

the category of pointed spaces to pointed spaces produces examples of homotopy

nilpotent groups: ΩF (X) is homotopy nilpotent of class ≤ n for any finite space X,

[5, Corollary 9.3]. Hence Theorem 5.2 gives an alternative proof of Theorem 2.1.

Biedermann and Dwyer also claim that all homotopy nilpotent groups are given

as values of loops on n-excisive functors. This implies that both theorems are in

fact equivalent.
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18. J. Rosický, On homotopy varieties, Adv. Math. 214 (2007), no. 2, 525–550.

19. S. Schwede, Stable homotopy of algebraic theories, Topology 40 (2001), no. 1, 1–41.

20. G. W. Whitehead, On products in homotopy groups, Ann. of Math (2) 47 (1946), 460–475.

Boris Chorny

Department of Mathematics

University of Haifa at Oranim

IL - 36006 Qiryat Tivon, Israel

E-mail: chorny@math.haifa.ac.il
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